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Abstract—We present SEAN 2.0, an open-source system de-
signed to advance social navigation via the training and bench-
marking of navigation policies in varied social contexts. A key
limitation of current social navigation research is that policies are
often trained and evaluated considering only a few social contexts,
which are fragmented across prior work. Inspired by work
in psychology, we describe navigation context based on social
situations, which encompass the robot task and environmental
factors, and propose logic-based classifiers for five common
examples. SEAN 2.0 allows a robot to experience these social
situations via different methods for specifying and generating
pedestrian motion, including a novel Behavior Graph method.
Our experiments show that when data collected using the Behav-
ior Graph method is used to learn a robot navigation policy, that
policy outperforms others trained using alternative methods for
pedestrian control. Also, social situations were found to be useful
for understanding performance across social contexts. Other
components of SEAN 2.0 include vision and depth sensors, several
physical environments, different means of specifying robot tasks,
and a range of evaluation metrics for social robot navigation. User
feedback for SEAN 2.0 indicated that the system was “easier to
navigate and more user friendly” than SEAN 1.0.

Index Terms—Social HRI, Simulation and Animation, Au-
tonomous Vehicle Navigation

I. INTRODUCTION

WHILE a significant amount of work has been done
to enable robots to effectively move in human en-

vironments [1], prior work has largely been fragmented by
interaction scenarios [2]. For example, past work has focused
on studying navigation in scenarios where robots cross human
paths [3], [4], approach users [5], [6] or groups [7], [8], and
move in crowded environments [9], [10]. This fragmentation
raises the question: how can we build robot navigation systems
that handle different social contexts?

Inspired by work in social psychology, we propose to
reason about context for social navigation in terms of social
situations, which consider the interplay between robot task
and environmental factors. Social situations may occur in a
given interaction scenario, consisting of three key elements:
1) the physical environment (such as a lab or warehouse), 2)
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Fig. 1. Different methods for specifying pedestrian behaviors in SEAN 2.0.
The Behavior Graph method is a novel approach that uses an environmental
graph-based annotation (bottom-left) to generate behavior (bottom-right).

pedestrian behavior in the environment, and 3) the robot’s
navigation task (involving motion from a start to a goal pose).

We contribute an open source system, the Social Environ-
ment for Autonomous Navigation (SEAN) 2.0, for training
and benchmarking social navigation algorithms. Unlike other
robotics simulation environments capable of high visual fi-
delity such as [11], SEAN 2.0 is designed so that robots can
experience a range of different pedestrian behaviors, which
result in varying social situations. To ground the concept
of social situations in our system, we propose logic-based
definitions for five social situations relevant to navigation.
These definitions serve as situation classifiers in SEAN 2.0.

One approach to specifying pedestrian behaviors for sim-
ulated interactions in social navigation is to handcraft a
starting pose and a goal pose for each pedestrian in the
scene. Handcrafting pedestrian behavior is time consuming
and specific to a single implementation, as evidenced by the
limited number of social situations commonly employed when
evaluating navigation policies [2]. Randomly choosing start
and goal poses is an easy alternative to handcrafting; yet, as
our experiments show, it is less likely to result in varied social
situations in practice.

As part of SEAN 2.0, we propose a novel method for
specifying pedestrian behavior based on a Behavior Graph
annotation in the physical environment (Fig. 1, bottom). We
define the Behavior Graph such that nodes represent either
static group formations or navigation waypoints, and compute
flow between nodes based on graph parameters. Pedestrians
traverse the scene by walking between different nodes in the
graph. This creates opportunities for the robot to experience
different social situations while avoiding time-intensive hand-
crafting of pedestrian motion (as in SEAN 1.0 [12]).

SEAN 2.0 also provides a range of components to enable the
training and benchmarking of navigation policies, including
vision and depth sensors, several physical environments, differ-
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ent means of specifying robot tasks, and a range of evaluation
metrics. To validate that SEAN 2.0 would be useful to the
robotics community, we collected feedback from 7 roboticists
who were early users of the system and incorporated their
feedback in the final version of SEAN 2.0.

As part of our experimental evaluation, we studied the
distribution of social situations that emerged in datasets gath-
ered with different methods of pedestrian control according
to logic-based social situation classifiers. We found that the
Behavior Graph data resulted in more varied social situa-
tions than the data generated with handcrafted or random
pedestrian motion. Also, policies trained on Behavior Graph
data outperformed other learned policies that were trained
using alternative methods for pedestrian behavior generation
in SEAN 2.0. Finally, our experiments showed that analyzing
navigation policies by social situation can reveal new insights
about robot policy performance.

In summary, our five main contributions are: 1) SEAN 2.0, a
novel system for training and benchmarking social navigation
systems; 2) a logical formalization of social situations; 3)
multiple methods for pedestrian behavior generation including
a novel Behavior Graph approach; 4) validation that our
system is useful to users outside our team via feedback from
other roboticists; and 5) experiments that show the usefulness
of social situations in SEAN 2.0 towards the training and
evaluation of robot navigation systems.

II. RELATED WORK

A. Simulation Frameworks for Social Navigation

Our work builds on developments in robotics simulators.
Recently, robotics simulators such as CARLA [11], iGibson
[13], and Habitat [14] have focused on creating high-fidelity
environments and have started to provide basic control of indi-
vidual pedestrians. Several works have extended the MORSE
robotics simulator [15], adding humans that react to a robot
[16] and humans in wide areas or narrow passages [17].
The MORSE simulator integrates with the Robot Operating
System (ROS); however, visual fidelity is low in comparison
to simulators based on game engines such as CARLA.

Crowd simulation frameworks such as Nomad [18], PED-
SIM [19], and Menge [20] incorporate methods of individual
and group behavior control into a system, but do not integrate
robotics platforms to train and evaluate social robot navigation
systems. Their strength lies in simulating pedestrian motion,
not in integrating them in realistic physical environments or
in the visualisation of pedestrians necessary for training state-
of-the-art vision-based robotics algorithms.

Our prior work, SEAN 1.0 [12], was designed for training
and evaluating social navigation algorithms. It supported inte-
gration with ROS and high-quality rendering of virtual pedes-
trians. However, it only provided simple waypoint navigation
for the pedestrians, requiring time-consuming handcrafting of
their behavior. More specifically, SEAN 1.0 allowed users to
specify pedestrian’s start and goal locations and implemented
only one example set of such handcrafted pedestrian start
and goal location annotations in three physical environments.
SEAN 2.0 continues to provide the same ability to customize

start and goal locations for pedestrians, but provides 13 sets
of handcrafted start and goal positions per environment (39
total sets) across 5 social situations. This allows users of
SEAN 2.0 to generate more varied pedestrian behavior with
the handcrafted approach for pedestrian control out of the box.
Further, we found that our proposed Behavior Graph, a novel
method for specifying pedestrian behavior, was a superior
method for training a navigation policy. See Section V for
more details.

An alternative approach to evaluating social navigation
policies is using prerecorded pedestrian trajectories as in
SocNavBench [21]. Prerecorded pedestrian trajectories offer
realistic motion, but are not reactive to the robot during policy
rollout. Our work compliments [21] by allowing for dynamic
human-robot interactions. To our knowledge, SEAN 2.0 is the
only robotics simulation environment capable of high visual
fidelity that provides easy-to-customize, dynamic pedestrian
behaviors, including group formations.

B. Modeling Pedestrian Behaviors

Algorithms for the animation and control of virtual char-
acters have been studied by different disciplines such as
computer graphics [22], cognitive science [23], and computer
vision [24]. The generation of collective behaviors has tradi-
tionally focused on modeling individual members of a crowd
to elicit human-like behavior from the group. For example,
flocks of animals inspired Reynolds et al.’s early work on
modeling groups of pedestrians [25]. Pelechano et al. [26]
focused their effort on imbuing human-like perception and
decision making capabilities into individual agents to elicit
more realistic group behavior. Collective behavior conditioned
on a given environment can rely on annotations of the physical
space, such as semantically relevant descriptors [27]. We
take inspiration from these ideas and utilize environmental
annotations in our proposed Behavior Graph.

To produce phenomena observed in human navigation,
collision avoidance methods for individual agents are often
used to compliment collective behavior. Such methods, often
referred to as microscopic models, include the Social Forces
model [28] and the velocity obstacle method of the ORCA
model [29]. While ORCA’s primary benefit is collision-free
movement between a large number of agents, the Social Forces
model is easily extended by the addition of new forces. For
this reason, our proposed Behavior Graph relies on the Social
Forces model. In the future, SEAN 2.0 could be extended with
other microscopic models.

III. FORMALIZING SOCIAL NAVIGATION CONTEXT

There are many definitions of context in disciplines related
to social navigation. For example, in social signal processing,
context has been defined as the who, what, when, where,
and why of interactions [30]. In Human-Robot Interaction
(HRI), the term context has been used to refer to high-level
environmental concepts such as an art gallery or a dining
hall [31]. Likewise, context has been used to describe the
relationship between agents (human and robot) in the scene,
such as agents in a static group formation or standing in a line



TSOI et al.: SEAN 2.0: FORMALIZING AND GENERATING SOCIAL SITUATIONS FOR ROBOT NAVIGATION 3

Cross Path Leave GroupDown Path Join Group Empty
Fig. 2. A brief visual description of social situations. Pedestrians are denoted
as white circles and the robot as an orange square.

[32]. Task-based context has also been explored in HRI, often
in the domain of engagement [33].

In this work, we propose to reason about context in social
robot navigation based on the notion of social situations
proposed by Argyle et al [34] in psychology. Those authors
studied the interplay between internal and external determi-
nants for human behavior. In their work, social situations
encompass the intrinsic goal of a person and the extrinsic
environment in which this person acts. Individuals’ goals arise
from an underlying drive which satisfies a specific need.

Consequently, we propose to reason about social situations
in robot navigation as a construct that considers the interplay
between a robot’s task and environmental factors. Consider
for example a situation when a robot must cross a pedestrian
path to reach the other side [35]. This situation arises from the
combination of the environmental factor of pedestrian traffic
and the robot’s start location relative to a navigation goal.
Similarly, a robot approaching a group [8] could be considered
another example of a social situation. In this case, the task is
navigating to a specific goal position in a conversational group
and depends on people’s spatial arrangement.

A. Logical Expressions for Social Situations

This section operationalizes the proposed notion of social
situations in relation to five instances relevant to navigation,
as shown in Fig. 2. In particular, we consider situations that
involve both pedestrians in motion and static group formations.
Although our proposed set of social situations may not be com-
plete for all robot navigation applications, it helps demonstrate
the value of formalizing social situations for mobile robotics.

We use logic to formally define the proposed situations. The
domain of predicates, defined below, are vectors in R2 that
represent position, orientation (as unitary direction vectors),
or velocity. These vectors can be provided in simulation or
estimated in the real world.

• Nearby Agent: Near(x1,x2) is true when two agents
at positions x1 and x2 are separated by ||x1−x2|| < D.

• Group Member: Member(x, g) is true when agent x
is a member of the group with center at position g.

• Walking: Walking(v) is true when an agent is moving
at a velocity v where ||v|| > V.

• Perpendicular Trajectory: PerpTraj(d1,d2) is true
when the orientations of two agents d1 and d2 are
perpendicular within an error of ±A rad:

cos(
π

2
+ A) ≤ d1 · d2

||d1||||d2||
≤ cos(

π

2
− A)

• Parallel Trajectory: ParTraj(d1,d2) is true when the
orientations of two agents d1 and d2 are parallel within
an error of ±A rad:

cos(A) ≤ d1 · d2

||d1||||d2||
All predicates are defined by simple geometric relationships

except for group membership. We assume group membership
is provided by the simulator or a method such as [36], [37]
which reasons about conversational formations [38]. Section
IV-G provides more details of our specific choice of other
parameters for these predicates.

The five Social Situations (Fig. 2) are expressed as:
Cross Path: a robot is at a position xr with orientation dr.
Also, it is nearby an agent at xa, moving at velocity va, with
orientation da perpendicular to dr.

CrossPath(xr,dr,xa,va,da) ≡
Near(xr,xa) ∧Walking(va) ∧ PerpTraj(dr,da)

(1)

Down Path: a robot is at position xr with orientation dr.
Also, it is nearby an agent at xa, moving at velocity va, with
orientation da parallel to dr.

DownPath(xr,dr,xa,va,da) ≡
Near(xr,xa) ∧Walking(va) ∧ ParTraj(dr,da)

(2)

Joining Group: a robot at position xr has a navigation goal
x′
r, which corresponds to a location that would make the robot

a member of a group with a center at g. The robot is also
nearby an agent at xa, which is a member of the same group.
Note that once the robot arrives at the goal, JoinGroup is no
longer true.

JoinGroup(xr,xa,x
′
r, g) ≡ Near(xr,xa)∧

Member(xa, g) ∧Member(x′
r, g) ∧ ¬(xr = x′

r)
(3)

Leave Group: a robot that is currently at a position xr, had
a starting position x′′

r which made it a member of a group
with a center at g. The robot is nearby an agent located at
xa, which is a member of the same group.

LeaveGroup(xr,xa,x
′′
r , g) ≡

Near(xr,xa) ∧Member(xa, g) ∧Member(x′′
r , g)

(4)

Empty: a robot at position xr has no other agents nearby.
Let X be the set of positions for all other agents in the
environment, then:

Empty(X,xr) ≡ ∀x ∈ X,¬Near(x,xr) (5)

The satisfiability of these logical expressions depends on
the agents in the environment. Only when a sufficient number
of agents are present, both moving and in static group forma-
tions, are all non-empty expressions satisfiable. For example,
in environments without group formations, JoinGroup and
LeaveGroup are not satisfiable. The size of the environment
also impacts satisfiability. For example, consider an environ-
ment with a robot and a pedestrian. The Empty proposition
is not satisfiable if the navigable space in the environment is
smaller than the nearby distance D.

IV. SEAN 2.0 SYSTEM

SEAN 2.0 builds on our prior work, the Social Environment
for Autonomous Navigation version 1.0 [12]. SEAN 1.0 and
SEAN 2.0 both use the Unity game engine and the Robot
Operating System (ROS) [39] as underlying technologies, and
can be integrated with online interactive surveys [40]. The
core innovation in SEAN 2.0 is a variety of methods for
specifying pedestrian behavior, including a novel Behavior
Graph approach that induces the proposed social situations
described in Sec. III. In addition, SEAN 2.0 provides improved
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Scenario

Physical Environments:

Warehouse LabOutdoor

Behavior Graph Annotation

Pedestrian Behaviors:

Handcrafted Random Graph

Robot Tasks:

Handcrafted

Random Graph

SEAN 2SEAN 1

Leave Group Join Group

Busy Robots: 

Jackal Kuri P3DX

Sensors: 

LIDAR 1st Person RGB 3rd Person RGB

RGB-D Top-Down RGB

Metrics: 
Completed Total Time Final Dist. to Goal

Robot-Ped. Collisions Robot-Obj. Collisions

Time Not Moving Total Path Len.

Min. Dist to Goal

Path IrregularityPath Efficiency

Personal Dist. Violations

Intimate Dist. Violations

Classifiers: Cross Path Down Path

Leave Group Join Group Empty

Fig. 3. SEAN 2.0 system architecture including components that were re-used or adapted from SEAN 1.0 (rounded box, grey) and new to SEAN 2.0 (purple).
Connections denote relationships between components in a Scenario. The Scenario, Metrics, and Classifiers are part of the SEAN 2.0 Unity API and exist
for all scenes. The SEAN 1.0 Trial Runner [12] is superseeded by Robot Tasks and the Metrics system in SEAN 2.0. Warthog is the only robot in SEAN 1.0
which is not in SEAN 2.0 due to it’s unwieldy size relative to people. See the text for details.

simulated sensors to facilitate vision-based, trained policies
and two new features. One new feature is a set of logic-
based social situation classifiers and the other is a revamped
software architecture. Our goal was to make SEAN 2.0 easily
configurable for users of its graphical user interface and easily
extensible for users of its programming interface. Fig. 3 shows
the system components of SEAN 2.0, including those that are
re-used or adapted from SEAN 1.0.

A. Software Design

The usability of a software system depends directly on
the underlying design decisions [41]. Therefore, we designed
SEAN 2.0 following the singleton design pattern [42] and
taking a convention over configuration approach [43].

The SEAN Unity API is implemented as a singleton
GameObject, through which all key components can be ac-
cessed. Unlike other scripts that may be added or removed
from the Unity scene at various times, this object exists
throughout the duration of the simulation and provides the
logic necessary to wrap other elements that may be removed or
added at various times. The singleton GameObject includes all
elements discussed below such as pedestrian behaviors, robot
tasks, social situation classifiers, metrics, and other utilities
such as a simulated clock and a tool for creating ROS maps.
The singleton GameObject can be added to any scene thereby
making it compatible with SEAN 2.0.

Classes in SEAN 2.0 use a convention over configuration
approach by providing sensible defaults [43]. This makes our
system easier to use than SEAN 1.0, which had an ad-hoc
design. Feedback from early users of SEAN 2.0 indicates that
our design choices provide a better user experience than SEAN
1.0 (see Section V-A for more details).

B. System Architecture

Our system architecture was designed to encapsulate the
elements of a Scenario, which consist of the Physical Envi-
ronment, Pedestrian Behavior, and Robot Task. These elements
are shown in Fig. 3 and correspond to objects in the SEAN 2.0
singleton GameObject. Physical Environments are locations
in which a scenario occurs, such as a warehouse. Pedestrian
Behaviors specify pedestrian motion. Robot Tasks specify a
robot’s start pose and goal pose.

C. Physical Environments

Environments correspond to the physical, static elements in
a scenario and are composed of 3D meshes, textures, lights,

and colliders that construct a Unity Scene. Static elements of
the environment constrain agent motion and define a navigable
area on the ground plane. SEAN 2.0 includes the warehouse,
lab, and outdoor environments from SEAN 1.0 with annota-
tions for our new pedestrian behaviors.

D. Pedestrian Behaviors
SEAN 2.0 supports three different approaches to high-level

pedestrian control: random, handcrafted, and graph. High-
level pedestrian motions are defined by their start and goal
poses. They also depend on a low-level collision avoidance
mechanism, which relies on the Social Forces model [28].
We extend the Social Forces model with consideration for
pedestrians moving along one side of a hallway [44] and to
stochastically vary the distances that they prefer to maintain
from the robot [45]. The next sections describe the three
methods for pedestrian behavior generation in SEAN 2.0.
Random Pedestrian Behavior: Start and goal locations are
randomly chosen on the environment’s navigable plane.

Implementation. There are no parameters other than the
number of pedestrians in the scenario. This approach for
pedestrian behavior generation is the easiest to implement,
but no group formations are created by this method. We use
this behavior as a baseline in our experiments to evaluate the
effect of pedestrian density on policy performance relative to
the other methods of pedestrian control in SEAN 2.0.
Handcrafted Pedestrian Behavior: Start, goal, and interme-
diary waypoint poses for the pedestrians are chosen manually
in each environment and may be designed to resemble spe-
cific social situations. This is the most granular method of
pedestrian control. The main challenge with this method is
twofold: 1) it can be time consuming, and 2) the many low
level decisions one has to make in regard to goal placement
may not align with the intended high level behavior. This
challenge is further discussed in Section V.

Implementation. In each of the environments, we imple-
mented 13 unique sets of start and goal poses for pedestrians
across five handcrafted scenarios to resemble each social situa-
tion described in Section III-A. Pedestrians in the Join Group
and Leave Group scenarios are configured in a static group
formation typical of conversational encounters [38]. In the
Cross Path and Down Path scenarios, we specified navigation
waypoints along a path so that the robot can cross parallel
or travel perpendicular to the path of pedestrian waypoints.
While choosing group locations and pedestrian waypoints, we
also chose corresponding poses for the robot in specific tasks,
described in Section IV-E.
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Some handcrafted pedestrian behaviors are parameterized
by the location of static group formations. Given a group
center, we set the poses of individual group members by
mimicking conversational formations in the Cocktail Party
dataset [46] in a manner similar to [8].

Graph-based Pedestrian Behavior: We propose using a
directed graph abstraction, which we call the Behavior Graph,
to specify collective pedestrian behaviors. A graph annotation
is overlaid in the environment (Fig. 1, bottom-left). The
graph parameterizes pedestrian motion via two types of nodes
that determine pedestrian behavior. Nodes serve as either 1)
navigational waypoints (through which an unrestricted number
of pedestrians can continuously flow) or 2) as a location
for a conversational group formation (where a number of
pedestrians can enter a static group formation for a specific
duration). The graph edges connect nodes that pedestrians can
navigate through.

On initialization, individual pedestrians are stochastically
assigned to starting locations, which correspond to specific
nodes from the Behavior Graph annotation. During the sim-
ulation, pedestrians without an assigned goal position are
first assigned to group nodes, until all group nodes are at
capacity. When pedestrians assigned to group nodes reach
their destinations, they remain at the group for a given du-
ration. Once all the group nodes have reached capacity, the
remaining pedestrians are stochastically assigned to waypoint
nodes. This allows the simulation to maintain group formations
and it allows pedestrians to automatically transition between
navigation and being part of conversational groups, which
is not easily achievable with the random or the handcrafted
pedestrian behaviors in SEAN 2.0.

The location of graph annotation nodes and the param-
eterization of accompanying edges can be used to modify
pedestrian congestion in the environment. Depending on the
graph’s structure, certain areas may have more or less pedes-
trian congestion than what a user desires. Pedestrians can be
directed away from the congested area by using edge weights
associated with low or uni-directional flow.

Implementation. SEAN 2.0 provides one Behavior Graph
annotation for each environment (warehouse, lab, and out-
door). Each Behavior Graph annotation consists of a graph
where every pair of adjacent nodes is connected by two
directed edges. Edges are weighted to control pedestrian
congestion using one of three costs: cmin, 1, or cmax, where
1 < cmax and 0 < cmin < 1. For example, consider the edges
between nodes u and v. Users of SEAN 2.0 can constrain
pedestrian flow using 4 sets of edge weights ⟨cuv, cvu⟩: ⟨1, 1⟩
for there to be medium flow between the nodes, ⟨cmin, cmin⟩
for high flow, ⟨cmax, cmax⟩ for low flow, and either ⟨1, cmax⟩
or ⟨cmax, 1⟩ for uni-directional flow.

The path to a pedestrian’s goal node is computed over the
edges between waypoint nodes using Dijkstra’s algorithm [47],
which considers the different edge costs and ensures that
pedestrians do not disrupt groups. Pedestrians traverse the
computed path using the Social Forces model [28], which
allows them to perform local collision avoidance.

E. Robot Tasks

Tasks specify the robot’s start (A) and goal (B) poses.
Robot tasks can leverage ground truth information from the
simulation, like group locations, to choose robot poses that
may result in specific social situations.

SEAN 2.0 implements the following robot tasks:
• RandomABNav: uniformly samples a start and a goal pose

for the robot from the navigable plane in the environment.
• BusyABNav: samples a start and a goal pose for the robot

nearby the largest cluster of pedestrians. Pedestrian poses
from SEAN 2.0 are clustered via k-means.

• Join Group: a group center is sampled from graph nodes
associated with group formations. Then, a point in the group
is sampled as the goal location for the robot and a further
away point is sampled as its start pose.

• Leave Group: a group center is sampled from graph nodes
associated with group formations. Then, a point in the group
is sampled for the start location for the robot and a further
away point is sampled for the goal pose.

• Handcrafted: assigns a start and goal pose specifically cho-
sen by a scenario designer. We implemented 5 handcrafted
tasks corresponding to the Cross Path, Down Path, Join
Group, Leave Group and Empty social situations.

Handcrafted tasks can only be used with handcrafted scenarios
as both robot and pedestrian poses are chosen by the scenario
designer. Join and Leave Group tasks can only be used with the
Behavior Graph method of pedestrian control as they depend
on nodes in the graph. All other tasks are decoupled from the
method of pedestrian control.

Tasks can be designed such that the robot is likely to
experience a certain social situation. However, the social
situations that we consider in this work only occur upon
satisfaction of the propositions described in Section III. For
example, a robot aiming to complete a Join Group task is not
guaranteed to enter a Join Group social situation, but given
the task design it is likely to experience this situation.

F. Sensor Integration

SEAN 2.0 provides a simulated RGB camera and a simu-
lated depth sensor. By convention, each robot implementation
includes one simulated depth sensor and three RGB cameras.
The depth sensor is positioned in a first-person perspective
and the RGB cameras provide three angles: first-person, third-
person, and top-down. This default configuration ensures that
a standard API is available when accessing sensor data for any
robot, allowing for comparison across robots.

G. Social Situation Classifiers

As part of SEAN 2.0, we provide five rule-based classifiers
that implement the propositional predicates defining our five
social situations from Section III. The predicates that we define
use parameters derived from Hall’s work in proxemics [48]
where applicable. For example, we consider two agents to be
“nearby” when the distance between them is less than two
times their personal space (1.2m). Our experiments in Section
V indicate that social situation classifiers can help users better
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understand the distribution of data resulting from different
pedestrian control methods. They can also help users identify
how well a robot navigation policy can learn from and perform
in different social situations.

H. Metrics

We implement a range of social navigation metrics which
are aggregated over the duration of a Robot Task, including:
Path Efficiency: ratio between the traveled and geodesic
distance of the search-based path from the starting position.
Time Not Moving: seconds that the robot was not moving.
Intimate Distance Violation: number of times the robot ap-
proached a pedestrian within a distance of 0.45m.

Our documentation details all of the other metrics imple-
mented in our system.1 The underlying data needed to compute
these metrics is available from the SEAN 2.0 API.

V. SYSTEM EVALUATION

We first studied the usefulness of SEAN 2.0 for the robotics
community by collecting and incorporating feedback from
seven researchers who used our system. Then, we studied how
robot navigation datasets generated via SEAN 2.0 affected
the training and evaluation of social navigation algorithms in
environments with varying pedestrian behavior.

A. User Feedback About SEAN 2.0

We initially gathered feedback about SEAN 2.0 from four
robotics researchers at Yale University, University of Wash-
ington, University of Massachusetts Amherst, and Carnegie
Mellon University who were previously unfamiliar with the
present work.2 They installed and used SEAN 2.0 and then
provided written feedback. Although one researcher noted that
occasionally pedestrians exhibited “unnatural behavior like
running into each other, the robot, and obstacles,” in general
the feedback was broadly positive. For example, one person
said that the “lab scene and the warehouse scene both looked
good.” Another researcher familiar with the dynamics of the
Kuri robot – one of the robots included in SEAN 2.0 –
noted that the base dynamics were realistic and Kuri followed
the navigation path “in a way that looks much like the real
platform” when controlled by the ROS Navigation Stack. The
one researcher who had prior experience with SEAN 1.0 noted
that SEAN 2.0 was “definitely easier to navigate and more
user friendly in terms of getting started with the simulator.”
This researcher later informed us via personal communication
that they were able to successfully setup and use SEAN 2.0
to submit a paper for publication without our involvement.
In contrast, when the user was using SEAN 1.0, we made
many small changes to the SEAN 1.0 system to support their
workflow.

Based on the helpful feedback from our users, we made a
number of improvements to SEAN 2.0. First, we tuned the pa-
rameters of our social forces model to decrease pedestrian-on-
pedestrian collisions. Second, we improved the documentation

1https://sean.interactive-machines.com/docs/metrics
2Our protocol was reviewed by our IRB and exempt from annual review.

for system setup and the integration of new robot policies.
Third, we fixed several bugs, including adding localization
information for two robot components and resolving an edge
case where the robot’s physics simulation was unrealistic when
it collided with a pedestrian.

After incorporating this initial feedback, we shared the
system with three more researchers at Yale University. One
said that the system was “easy to use,” another mentioned
that they did not run into any issues while using the system,
and another noted that “I can see how one would be able to
implement their own controller through this [system].”

B. Emergence of Social Situations

We studied the distributions of social situations in three
datasets collected from SEAN 2.0, where each dataset cor-
responded to a different method of pedestrian control.

1) Data Collection: Sensor data and robot control infor-
mation was collected in SEAN 2.0 while a human expert
navigated the robot in the warehouse environment using a
joystick. The expert was first familiarized with the analog
joystick controls and then directed to navigate the robot to
the goal in a polite manner, similar to the way they would
navigate in real life. One hour of data was collected for
each of the three proposed methods of pedestrian control:
random, handcrafted, and graph-based. The random and graph
methods were configured with an equal number of pedestrians
(n = 62). The handcrafted scenarios had a variable number
depending the scenario’s design, but on average they had far
fewer pedestrians (n ≈ [5, 10]) due to the time and effort
required to manually specify behaviors.

The social situation classifiers described in Section IV-G
were parameterized as follows. The maximum distance at
which two agents were considered nearby was D = 2.4m,
within Hall’s personal space [48]. The minimum speed of an
agent considered to be walking was V = 1.4m/s, near the
average human walking speed. We set a small error value
A = π

12 = 15◦ within which a pedestrian trajectory was
considered parallel or perpendicular to the robot.

During data collection, robot tasks were chosen to induce
the robot to experience a uniform distribution of social sit-
uations depending on the method of pedestrian control. For
the random method, we used the RandomABNav task for the
entire hour of data collection. For the handcrafted method,
we collected 12 min. of data from each of the 5 robot tasks
designed to correspond to the 5 social situations formalized in
Section III. For the graph, we collected data evenly between
the Join Group and Leave Group robot tasks.

The collected data was divided into examples composed
of 5 depth images, a local navigation plan with 5 points of

TABLE I
PERCENTAGE OF EXAMPLES BELONGING TO EACH SOCIAL SITUATION.

Social Situation
Behavior Cross Path Down Path Join Group Leave Group Empty
Random 14.51% 24.68% 0% 0% 66.44%

Handcrafted 0.73% 0.74% 3.43% 13.48% 81.62%
Graph 13.24% 22.08% 12.09% 19.51% 33.08%
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Fig. 4. Select results for 4 policies in 3 scenarios aggregated over 123 episodes. The three learned policies are trained on data from the Behavior Graph (G),
Random (R), and Handcrafted (H) methods of pedestrian control. We also evaluate the ROS Navigation (N) policy with social cost layers [49]. Three metrics
are shown: Completed Tasks (A), Time Not Moving (B), and Intimate Distance Violations (C and D). Values for Time Not Moving are computed in seconds
and averaged over all episodes. All other plots show the total or average count of the occurrences of the metric over all episodes. The percentage gain for a
specific metric can be calculated between grid-cells. For example, the Behavior Graph policy spends 55% less Time Not Moving than the Handcrafted policy
when rolled out in the Behavior Graph environment.

the expert’s most recent trajectory sampled at 1hz, a search-
based global plan with the 10 nearest points between the
robot position and the goal (where each point was at least
0.5m apart). Each example also contained five boolean flags
corresponding to the social situation classifiers.

2) Results: Table V-B1 shows the distribution of social
situations between the three datasets generated using SEAN
2.0 with different methods of pedestrian control. The number
of examples in which the robot experienced the five social
situation were not evenly distributed with the Handcrafted
Behavior approach, even though we collected data for an equal
amount of time in each Handcrafted scenario. In the Random
pedestrian dataset, groups did not form, so no Join Group
or Leave Group social situations were experienced. However,
social situations were more evenly distributed among the Cross
Path, Down Path, and Empty scenarios in comparison to data
from the Handcrafted scenarios. The Behavior Graph dataset
led to a more uniform distribution of social situations than the
Handcrafted or Random datasets.

C. Evaluation of Navigation Algorithms

1) Experimental Setup: Whereas SEAN 1.0 [12] was evalu-
ated using only the ROS navigation stack, we evaluated SEAN
2.0 as a benchmarking platform using two robot navigation
methods: the ROS navigation stack with social cost layers [49],
and a neural network controller following [50] (using depth
images rather than LIDAR as input). For the latter method,
we trained three controllers using each of the datasets created
with the three different methods of pedestrian control outlined
in Section V-B1. This was not possible with SEAN 1.0 because
SEAN 1.0 only supported one method of pedestrian control.

We trained the neural network controllers end-to-end using
PyTorch with equally weighted losses for the local planner and
velocity controller modules. We used the AdamW optimizer
with the default parameters, lr=0.001, wd=0.010, and a batch
size of 1024 for all experiments. A search over a range of batch
sizes ({128, 256, 512, 1024}) revealed similar performance so
we chose a batch size which used the maximum amount
of GPU memory, effectively decreasing the time required to
train over a single epoch of the data. The training machine

had 128GB of RAM, an Intel Xeon W-2155 CPU clocked
at 3.30GHz, and an NVIDIA RTX 2080TI GPU. An early
stopping window of 50 epochs was used after trying between
10 and 100 epochs. The loss did not always reach a local
minima at 10 epochs, but the loss stabilized far before 100.

2) Results: Neural network navigation policies trained on
the Handcrafted (H) dataset completed a similar number
of episodes as policies trained on the Behavior Graph (G)
data. Across all rollout environments, the average number of
Completed Tasks was 112.7 for both H and G, as computed
over the columns of Fig. 4A. However, polices trained on
Handcrafted (H) data spent more time on average not moving
than the policies trained using the Behavior Graph (G) method.
The policy trained using Random (R) pedestrians paused for
less time on average than the policy trained on Handcrafted
(H) data, but paused for more time on average than the policy
trained using the Behavior Graph (G). All learned policies
spent less time not moving than the ROS Navigation Stack
(N). The average Time Not Moving per policy was 16.3s for
R, 22s for H, 11s for G, and 28.7s for N, as computed over
the columns of Fig. 4B.

Intimate Distance Violations were more numerous for poli-
cies rolled out in the scenarios with the Behavior Graph
(G) compared to the scenarios utilizing Random (R) and
Handcrafted (H) pedestrians. The average number of Intimate
Distance Violations per rollout scenario were 2.5 for G, 1.9 for
R, 1.0 for H, as computed over the rows of Fig. 4C. Dissecting
the data by social situations in Fig. 4D, we see the increase
in violations in the Behavior Graph rollout scenario occurred
mainly in the Cross Path and Down Path social situations. This
type of analysis suggests that performing data augmentation
for a learned policy and adjusting the training data distribution
to include more samples from the under-performing social
situation could increase performance. Additionally, dissecting
metrics by social situation allows researchers to interrogate
controller performance in specific contexts. For instance, de-
livery robots may need to be especially skilled at navigating
down busy pathways in warehouse settings. Note that splitting
the data by social situation was not possible in SEAN 1.0 as
it did not contain a concept of social situations.
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VI. CONCLUSION AND FUTURE WORK

SEAN 2.0 enables the development of socially compliant
navigation controllers in densely populated, dynamic environ-
ments. We designed SEAN 2.0 based on our desire to train
and evaluate navigation algorithms that could adapt to varied
social contexts. This led to the proposed formalization of social
situations and a variety of features in SEAN 2.0, including
sensors, navigation metrics, different means of specifying
robot tasks, a set of logic-based classifiers for social situations,
and multiple methods for pedestrian control. In particular, the
newly proposed Behavior Graph enabled efficient specification
of pedestrian motion while allowing for the emergence of
varied social situations.

While our work showed how five social situations could
be formalized, these are not intended to be a complete set.
In the future, we hope to expand our work to include other
social situation classifiers in SEAN 2.0. Moreover, the notion
of social situations for navigation could be expanded to include
other factors such as urgency and the configuration of objects
in the environment. Also, we hope to perform a larger effort
benchmarking different navigation policies.
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