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ABSTRACT
Social navigation research is performed on a variety of robotic plat-
forms, scenarios, and environments. Making comparisons between
navigation algorithms is challenging because of the effort involved
in building these systems and the diversity of platforms used by
the community; nonetheless, evaluation is critical to understanding
progress in the field. In a step towards reproducible evaluation of
social navigation algorithms, we propose the Social Environment
for Autonomous Navigation (SEAN). SEAN is a high visual fidelity,
open source, and extensible social navigation simulation platform
which includes a toolkit for evaluation of navigation algorithms.We
demonstrate SEAN and its evaluation toolkit in two environments
with dynamic pedestrians and using two different robots.

CCS CONCEPTS
• Computing methodologies → Interactive simulation.
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1 INTRODUCTION
Simulation is useful along the whole development cycle of robotic
systems including data collection, features development, testing,
and deployment [14, 19]. Simulation is key for the verification of
safety-critical systems and is particularly relevant for companies
that make robots for mainstream audiences [16].

Driven by the gaming industry and demand for autonomous
vehicles, the robotics community has recently experienced a rapid
increase in the quality and features available in simulation tools.
These advancements led to simulation environments for self-driving
vehicles [1, 4] and aerial vehicles [6, 13, 20]. Crowd simulations
have improved as well [2, 3, 22], although often independently of
simulation environments for mobile robots, including environments
that build on game engines [8, 10], or state-of-the-art rendering
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Figure 1: SEAN’s rendering a world (left) and view of the
scene from the robot’s perspective (right). The outdoor city
scene (top) and the lab scene (bottom) include dynamic
pedestrians for studying social robot navigation.

like Gibson[26] or ISAAC.1 This disconnect has led to a gap in
high fidelity simulation environments for evaluating social robot
navigation in pedestrian settings, e.g., service robots that need to
operate nearby people and subject to social conventions. Our work,
depicted in Figure 1, is a step towards filling this gap.

We propose SEAN, a Social Environment for Autonomous Navi-
gation, as an extensible and open source simulation platform. SEAN
includes animated human characters useful for studying human-
robot social interactions in the context of navigation. As other re-
cent simulators [8, 10, 13, 20], SEAN leverages modern graphics and
physics modeling tools from the gaming industry, providing a flexi-
ble development environment in comparison to more traditional
robotics simulators like Gazebo [9]. We provide two ready-to-use
scenes with components that allow social agents to navigate accord-
ing to standard pedestrian models. We provide integration with the
Robot Operating System (ROS), which allows for compatibility with
existing navigation software stacks. An important contribution of
this work is a toolkit for repeated execution of navigation tasks and
logging of navigation metrics. We hope SEAN facilitates developing,
testing and evaluating social navigation algorithms in the future.

2 SIMULATION PLATFORM
SEAN is a collection of tools in the Unity 3D game engine2 and
the Robot Operating System (ROS) [18] that allows for control
of a mobile robot in a dynamic, simulated human environment.

1https://developer.nvidia.com/isaac-sim
2https://unity.com/
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Unity implements the NVIDIA PhysX physics engine, which has
been found to provide promising results for robot simulation [10].
Communication between ROS and Unity is implemented as a set of
scripts executed as part of the Unity scripting run-time model and
implemented via the ROS# library.3 SEAN’s architecture balances
between a) ease of integration with navigation systems (or robot
teleoperation) via ROS, b) high visual fidelity for creating immersive
environments and enable vision-based navigation methods, and c)
a cross-platform ecosystem that supports iterative development.
SEAN works in Windows 10 and Ubuntu 18.04 with ROS Melodic.

The key tenets of our approach are usability and flexibility. While
these often seem at odds, we seek these goals by providing a set
of scenes, robots, and evaluation metrics within the platform to
enable users to use the system with minimal preliminary work.
Additionally, we maintain an open source repository and support-
ing documentation to allow the community to improve our social
navigation environment.4. Our contributions are an effort to begin
to exploring the challenging problem of fairly and reproducibly
benchmarking algorithms for human-robot social interactions.

Scenes: A scene is a 3D environment in which a robot operates.
With our initial release, we provide a high-fidelity model of a lab
environment and a larger outdoor city scene (Fig. 1). Because hu-
mans play a key part in the study of robot navigation in theses
environments, for each scene we have created reasonable start and
goal positions for human agents to navigate. To this end, SEAN uses
a combination of crowd flow prediction [21] and Unity’s built-in
path planning algorithm. The system is parameterized such that we
can easily deploy an appropriate number of agents given the size
and context of the scene. We can also vary the density of pedes-
trians across experiments in a repeatable manner. SEAN’s online
documentation explains how to create and modify scenes.

Robots and Sensors: SEAN provides 2 robot models ready to
run: amedium size Clearpath Jackal, which is suitable for indoor and
flat outdoor environments; and a Warthog with 254mm of ground
clearance. The Warthog is more suitable for outdoor environments
due to its bigger size (Fig. 1). Because neither robot comes equipped
with standard sensors, we outfitted themwith a simulated Velodyne
VLP-16,5 a LIDAR scanner, and a simulated RGB camera.

Evaluation Toolkit: SEAN’s toolkit for evaluating social navi-
gation algorithms centers on the Trial Runner, which enables repeat-
able and automatic execution of navigation tasks. The Trial Runner
performs a trial by executing a collection of point-to-point naviga-
tion episodes. Each episode begins with the Trial runner configuring
the scene, actors, and robot positions. Pedestrians are assigned goal
positions and a ROS navigation goal is used to indicate the desired
final pose for the robot. As the robot navigates, the Trial Runner
records relevant metrics. It starts a new episode once the robot
has moved to a sufficiently close location to the destination or the
episode times out. While the initial conditions for each episode
are random by default, they are recorded at the beginning of an
episode. This allows to replay the episode for fair comparisons of
navigation methods.

SEAN currently tracks the following navigationmetrics: whether
or not the robot reached the goal position, how long it took to reach
3https://github.com/siemens/ros-sharp
4https://sean.interactive-machines.com/
5https://github.com/Field-Robotics-Japan/unit04_unity/

Table 1: Sample Jackal, Warthog results, via the ROS Nav.
Stack, or teleoperated*. 𝜇 ± 𝜎 over 10 episodes.
Scene Robot Elapsed (sec.) Complete Final Dist (m) Ped. Dist (m) Collisions
Lab J 24.51 ± 19.36 60% 2.26 ± 2.92m 1.54 ± 1.76m 7.1 ± 9.4
Lab J * 21.6 ± 28.08 88% 1.14 ± 1.99 0.92 ± 1.16 4.63 ± 5.83
City J 37.09 ± 13.74 29% 9.54 ± 8.94 0.64 ± 0.42 20 ± 30.83
City J * 38.54 ± 29.5 80% 4.59 ± 11.87 1.06 ± 0.67 3.1 ± 7.58
City W * 31.7 ± 20.94 100% 0.48 ± 0.01 2.27 ± 1.08 0 ± 0

the final position, collisions with static objects, and the robot’s
final distance to the goal position. The latter metric is particularly
useful for comparison in challenging tasks. In addition, SEAN can
continuously track metrics related to social interactions. Currently,
we track the closest distance between the robot and pedestrians,
as well as the number of collisions with pedestrians, which are
recorded separately from collisions with all other objects. These
metrics are common in the social navigation literature [12, 15, 17, 22,
24] and serve as a starting point for comparisons among navigation
approaches. We plan to expand this set of metrics in the future.

Table 1 provides example results by the Trial Runner for the ROS
Navigation Stack [7], which was minimally tuned, and a teleoper-
ated robot. Localization for the ROS Nav. Stack was performed via
SLAM [5]. Low performance is attributed to not taking into account
human actors during mapping and overly conservative navigation
behavior in the dynamic environments [24].

Teleoperation was implemented through a ROS node that con-
nected to a gamepad controller. The teleoperated Jackal did not
reach 100% of the target goals because people blocked its way and
the episodes timed out. Nonetheless, teleoperation was an inter-
esting baseline for automated methods. It can also serve to gather
demonstrations or human preferences for navigation trajectories
in the future [11, 25].

As shown by the examples, SEAN is a valuable tool to systemati-
cally evaluate performance. Additionally, SEAN can accelerate the
development of navigation systems by helping identify problems
early on. We do not claim, though, that simulation is a replacement
for real-world testing; instead, SEAN compliments real-world eval-
uation of human-robot interactions in the context of navigation.

3 CONCLUSION & FUTUREWORK
We presented SEAN, a collection of open-source tools and social
environments for autonomous robot navigation. Our hope is that
the flexibility of the platform encourages researchers to make more
comparisons between social robot navigation methods, and more
easily study human-robot interactions in the future. For instance,
videos from SEAN could be used for qualitative human evaluation
of navigation approaches [23]. While we currently provide a limited
number of scenes, robots, and evaluation metrics, we plan to expand
these features in the future. We also plan to test SEAN in terms of
sim-to-real transfer of navigation policies and human evaluation of
robot behaviors.
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